JET STRUCTURE TOPICAL GROUP REPORT

Dennis Perepelitsa and Rosi Reed

sPHENIX Stated Jet Physics Goals

The key to the physics is to cover jet energies of 20–70 GeV, for all centralities, for a range of jet sizes, with high statistics and performance insensitive to the details of jet fragmentation

- JER < 120%/ $\sqrt{E_{jet}}$ in p+p for R = 0.2-0.4 jets
- JES Uncertainty < 3% for inclusive jets
- Energy measurement insensitive to softness of fragmentation (quarks or gluons) — HCal + EMCal
- Trigger to select jets without bias

sPHENIX Stated DiJet Physics Goals

The key to the physics is large acceptance in conjunction with the general requirements for jets as above

- Greater than 80% containment of the opposing jet axis
- Greater than 70% full containment for R = 0.2 dijets
- RAA and AJ measured with < 10% systematic uncertainty
 - Also key in $p+A \rightarrow$ onset of quenching effects

sPHENIX Stated Fragmentation Function Physics Goals

The key to the physics is unbiased measurement of jet energy

- Excellent tracking resolution out to greater than 40 GeV/c
 - $dp/p < 0.2\% \times p$
- Independent measurement of p and E (z = p/E)
 - No difficult to untangle autocorrelations

Descoping options

Tracking and calorimetry are the biggest questions for jet structure

- Tracking affects charged particle measurements
 - Need to quantify efficiency/resolution/purity inside jet cone
- EMCal+HCal options affect jet energy measurements
 - Need to quantify jet response
 - Resolution
 - Non-Gaussian tails
- In following slides we will show the current status of answering these issues

Descoping options - EMCal

Reduce Acceptance $\sim |\eta| < 0.6$

- Jet energy measurements affected across the boundary
- Statistics reduced for both photons and fully contained inclusive jets
- Statistics reduction checked at generator level
- Jet resolution with only HCal?

Ganging towers together

 Not key for jet structure → Good photon performance needed to calibrate JES

Simulation samples

- High p_T jet sample allows us to study:
 - The effect of the thinned HCal on the jet response
 - The effect of the ganged EMCal towers on the jet response
 - High p_T jets produced at mid-rapidity, so will not elucidate the effect of ½ EMCal
- Low p_T jet sample allows us to study
 - ½ EMCal as these jets will have a wider η range
 - p_T dependence of inclusive jet response

Simulations Generated for Descoping Investigation 1 of 2

 N_{evt} = 10k of p_{T} = 50-55 GeV dijet events Generated with PYTHIA8

- Generate falling jet spectrum with truth-level filtering
 - Keep events with at least one R=0.4 truth jet with 50 GeV < p_T < 55 GeV and $|\eta|$ < 0.6.
- HardQCD:all
- PhaseSpace:pTHatMin = 45.0
- PYTHIA events only want to know jet response from detector, not from UE
- /phenix/upgrades/decadal/dvp/GeneratorInputFiles/

Simulations Generated for Descoping Investigation 2 of 2

 N_{evt} = 10k of p_{T} = 25-30 GeV dijet events Generated with PYTHIA8

- Generate falling jet spectrum with truth-level filtering
 - Keep events with at least one R=0.2 truth jet with 25 GeV < p_T < 30 GeV and $|\eta|$ < 0.9.
- Required to fully measure the effect of the reduced EMCal acceptance on the jet response

GEANT4 Simulations

High p_T sample run through 3 Calo configurations:

- Nominal
- 1/2 EMCal
- Thin HCal

Total of 30k G4 dijet events

- /sphenix/sim/sim01/production/aldcharge/pythia8/ pythia8dijet/50-55GeV/
- Note: EMCal run with 1D Spacal geometry for memory considerations

Key observable: jet energy response p_T^{reco} / p_T^{true}

GEANT4 Simulations

Low p_T sample run through 2 Calo configurations:

- Nominal
- 1/2 EMCal

Total of 20k G4 dijet events

- /sphenix/sim/sim01/production/aldcharge/pythia8/ pythia8dijet/R0p2pT25t30eta0/spacal1d/
- Note: EMCal run with 1D Spacal geometry for memory considerations

Key observable: jet energy response p_T^{reco} / p_T^{true} versus η

MIE JER versus p_{T,jet}

- R = 0.4 jets effected more by UE
- Similar response in pp to R = 0.2 at p_T > 50 GeV
- JER affects unfolding uncertainty
- Ideal p_{T,Reco}/p_{T,truth} → 1
 - JES

Inclusive Jet Response vs Calo Configuration

For inclusive jet measurements

- No significant effect due to the ganged EMCal
- Slight shift and broadening of the Response for thin HCAL but....

Inclusive Jet Response vs Calo Configuration

The devil is in the details → HCal response will depend on fragmentation

- High Z particles are more likely to "punch through" a thinner HCal
- Needs additional simulation to quantify

Fresh off the press!

Looked at higher p_T jets (60 - 65 GeV) this morning

- Result is similar to 50 55 GeV
- Additionally looked at 40 GeV pions → high z particles
- Very similar to jet results → 40 GeV hadrons do not seem to be punching through

Jet Response for DiJet A_J Measurement

Difference in Jet Response between nominal and thin HCal has a minimal effect on reconstructed A_J

Does not account for UE Fluctuations

$$A_J = \frac{p_{T,Leading} - p_{T,Subleading}}{p_{T,Leading} + p_{T,Subleading}}$$

$$p_{T,Reco} > 10 \text{ GeV}$$

 $|\Delta \phi| > 2.35$

1/2 EMCal

Fully Contained

• $|\eta|$ < 0.5

EMCal

1/2 EMCal

Partially Contained

• $0.5 < |\eta| < 0.7$

HCal

-2.5% shift to the JES

1/2 EMCal

- HCal can measure the jet energy EM component
- Does not study how detector-level UE fluctuations would be affected
- Does not quantify sys unc due to η-dependent jet energy correction
 - Flavor-dependence?
 - Fragmentation?

 $(1/N_{\rm jet})({\rm d}N/{\rm d}(p_{\rm T}^{
m reco}/p_{\rm T}^{
m truth}))$

Jet Containment vs R - MIE

For fully contained jets, acceptance is reduced with increased R

- For R = 0.4 jets at 20 GeV, acceptance reduces the total reconstructed dijet cross-section ~30%
- Conditional cross-section is ~70% for R = 0.2 jets

Jet Containment vs R - Reduced EMCAL

For R = 0.4 jets at 20 GeV, acceptance reduces the total reconstructed dijet cross-section to ~4% from 30% from the MIE

An order of magnitude different

Next Steps – Calorimeter Response

- The simulations shown thus far have tested the response of the calorimeter to inclusive jets
 - The details of the fragmentation pattern are also important!
- Test the effect of the thin HCal versus fragmentation
 - High p_T hard fragmenting jet may punch through the calorimeter
 - Simulate single high p_T hadrons or
 - Directly look at the fragmentation of the existing high p_T jet simulation data set
 - Statistics? Effect increases with z

Tracking Simulation Tasks

Take same set of N_{evt} = 10k, p_{T} = 50-55 GeV dijet events

- Do tracking-only sim for multiple tracking options
- Repeat for PYTHIA only and for HIJINGembedded

For 3 (e.g.) tracking configurations, this is 10k events x 3 configurations x 2 embeddings = 60k w/tracking-only sim

- Key observable: efficiency, fake rate, resolution vs. z
- Requires TPC simulation → A few days

Previous Tracking Evaluation Work

G4 tracking studies have been underway in Simulations meeting

- On next slide, study of charged particle performance for 40 GeV dijets, with some current (at the time) tracking options
- Note: "VTX" on next slide is 2 layers with existing dead areas, not one reconfigured layer...

- Comparing tracking configurations: MIE ideal 7-layer silicon, reused VTX pixels + ganged strips, 7 layer ALICE ITS
- G4 tracking simulated, embedded in b=4fm Hijing background
- Fragmentation functions for p_T ~40 GeV dijets

Truth-matched $\frac{dN / dp_T^{reco}}{dN / dp_T^{truth}}$

How big are corrections for efficiency and p_{T} resolution together?

Fake+secondary truth-matched

$$\frac{dN / dp_T^{reco}}{dN / dp_T^{reco}}$$

What is the relative fake rate inside jet cone?

Potential Additional Simulation Tasks

If resources and time are available could extend to:

- Explore multiple p_T bins
- Explore quark/gluon response differences at low p_T
- Explore effects of UE

If resources and time are available could extend to:

- Run 10k+ pure-HIJING events, w/ fast-sim calo matching?
- Estimate statistical uncertainties vs. z for the FF of p_T = 40, 50, 60 GeV jets?
- Toy unfolding to translate performance into FF systematics?

Conclusions

- Ganged EMCal No effect on Jet Response
- Thinned outer HCal Small shift in JES for inclusive jets
 - Requires more investigation → fragmentation effects
- ½ EMCal
 - JES has a -5% shift for $|\eta| > 0.7$ due to HCal only
 - Unfolding may be complicated in overlap region
 - Dijet cross-section for R = 0.4 jets reduced ~ order of magnitude if fully contained
- We are prepared to run tracking studies when available
- Triggering descoping options will not have a large effect
- Depending on resources, additional studies with HIJING+ embedding/ other kinematic selections may be performed

Back-Up

Jet unfolding and non-Gaussian response

Dennis' GEANT Calorimeter energy response to 50-55 GeV jets.

Dennis' GEANT Calorimeter energy response to 50-55 GeV jets.

Now with thinner outer HCal. Results in second component Gaussian (low-side tail contribution).

5/18/2016

Bayes unfold works well – resulting unfold/truth ratio around one.

Use energy resolution function with lowside tail for "fake data", but then generate response matrix completely ignoring the low-side tail (just the peak Gaussian).

Systematic offset of \sim 5% and then larger at the highest pT \sim 15-20%. This is an extreme case (just an initial test).

Fragmentation Function MIE

pCDR Statements

- Jets The key to the physics is to cover jet energies of 20–70 GeV, for all centralities, for a range of jet sizes, with high statistics and performance insensitive to the details of jet fragmentation.
 - energy resolution < $120\%/\sqrt{E_{jet}}$ in p+p for R=0.2-0.4 jets
 - energy resolution < 150%/ $\sqrt{E_{jet}}$ in central Au+Au for R = 0.2 jets
 - energy scale uncertainty < 3% for inclusive jets
 - energy resolution, including effect of underlying event, such that scale of unfolding on raw yields is less than a factor of three
 - jets down to R = 0.2 (segmentation no coarser than $\Delta \eta \times \Delta \varphi \sim 0.1 \times 0.1$)
 - underlying event influence event-by-event (large coverage HCal/EMCal)
 - Energy measurement insensitive to softness of fragmentation (quarks or gluons) — HCal + EMCal

EMCal Acceptance – DiJet containment

- Reduced acceptance → Reduced DiJet statistics
 - Generator only analysis
 - Especially key for R > 0.2 and/or low p_T jets
 - Note: Pythia 8 tune not identical to the MIE, slightly better performance

Flavor Content

Total Calorimeter Response (Cluster)

